
April 7, 2005

1

Modular Grammar Design with

Typed Parametric Principles

1.1 Introduction

Extensible Dependency Grammar (xdg) (Debusmann et al., 2004) is a
general framework for dependency grammar, with multiple levels of lin-
guistic representations called dimensions. Its approach, motivated by
the dependency grammar paradigm (Tesnière, 1959, Mel’čuk, 1988),
is articulated around a description language for multi-dimensional at-
tributed labeled graphs. xdg is a generalization of Topological Depen-
dency Grammar (tdg) (Duchier and Debusmann, 2001).

For xdg, a grammar is a constraint that describes the valid linguistic
signs as n-dimensional attributed labeled graphs, i.e. n-tuples of graphs
sharing the same set of attributed nodes, but having different sets of
labeled edges. It is central to xdg that all aspects of these signs are
stipulated explicitly by principles : the class of models for each dimen-
sion, additional properties that they must satisfy, how one dimension
must relate to another, and even lexicalization.

Yet, no formal account set in the xdg framework has so far explained
what exactly these principles are, nor how they can be brought to bear
on specific dimensions. In this paper, we show how an xdg grammar
can be formally assembled from modular components called parametric
principles. This yields a modular and compositional approach to gram-
mar design. Compositional coherence is ensured by a type system whose
primary novelty is to accommodate the notion of multi-dimensional

1

FG-MOL 2005:

The 10th conference on Formal Grammar

and

The 9th Meeting on Mathematics of Language.

TBA.
Copyright c© 2005, CSLI Publications.

April 7, 2005

2 /

graphs. Instantiation of parametric principles not only imposes gram-
matical constraints, but, through the type system, also determines the
necessary structure of grammatical signs. In this perspective, a gram-
mar framework is simply a library of parametric principles such as
the one offered by the xdg Development Kit (xdk) (Debusmann and
Duchier, 2004).

1.2 Extensible Dependency Grammar

We briefly illustrate the xdg approach with an example of the German
subordinate sentence “(dass) einen Mann Maria zu lieben versucht”.1

Figure 1 shows an analysis with two dimensions: id models grammat-
ical function and lp word-order using topological fields (Duchier and
Debusmann, 2001, Gerdes and Kahane, 2001)

einen
a(acc)

Mann
man

Maria
Maria

zu
to

lieben
love

versucht
tries

det

obj prt

subj vinf

einen
a(acc)

Mann
man

Maria
Maria

zu
to

lieben
love

versucht
tries

d
n n

p
v

vdf pf

mf mf vcf

FIGURE 1 Example XDG analysis, ID left, LP right

Both dimensions share the same set of nodes (circles) but have dif-
ferent edges. On id, Maria is subject (subj) of control verb versucht,
and Mann object (obj) of lieben. On lp, Mann and Maria are both in
the Mittelfeld (mf) of versucht, i.e. Mann has climbed to the finite verb.

1.3 Type System

Formalization. Let V be an infinite set of node variables, L a finite
set of labels, and A a set of attributes. An attributed labeled graph
(V,E,A) consists of a finite set of nodes V ⊆ V , a finite set of la-
beled directed edges E ⊆ V ×V ×L between them, and an assignment
A : V → A of attributes to nodes. An n-dimensional attributed la-
beled graph ((V,E1, A1), . . . , (V,En, An)), or multigraph, is a n-tuple of
labeled attributed graphs (V,Ei, Ai) over the same set of nodes V .

To provide a typed account of the xdg framework, we need a sat-
isfactory type for graphs. A first idea is ({V}, {V × V × L},L → A),
where we write {τ} for set of τ , but such a type is very imprecise: it
fails to express that the nodes used in the edges (2nd arg) are elements

1(that) Mary tries to love a man – see (Duchier and Debusmann, 2001)

Modular Grammar Design with Typed Parametric Principles / 3

April 7, 2005

of the graph’s set of nodes (1st arg). Since additionally element graphs
of a multigraph must be defined over the same set of nodes, some form
of dependent typing appears inescapable. Given that general systems
of dependent types tend to make type-checking undecidable, we sketch
instead a restricted system, using kinds, sufficient for our purpose.2

1.3.1 A system of restricted dependent types

We assume given a number of disjoint sets of symbols Di called finite
domain kinds. Among them, two are distinguished: Nodes and Labels.
Much of our type and kinding systems are quite standard. For reasons
of space, we only detail the parts which are original to our proposal,
and write τ :: κ and e : τ for the judgments that type τ has kind κ and
expression e has type τ , omitting kinding and typing contexts.

κ ::= ? top

| Di domain

| Gc1|···|ck
graph

| Mc1|···|ck
multigraph

| . . .

Di @ ? Gv @ ? Mv @ ?

τ :: κ κ @ κ′

τ :: κ′

FIGURE 2 Kinds and subkinds

τ, τi ::= c1| · · · |ck domain | [f1 : τ1, . . . , fn : τn] record

| {τ} set | graph τ1 τ2 τ3 graph

| (τ1, . . . , τn) tuple | [[f1 : τ1, . . . , fn : τn]] multigraph

| τ1 → τ2 function | grammar τ grammar

| !τ singleton | . . .

FIGURE 3 Types

Finite domain sum types. They are built from symbols drawn from
finite domain kinds: we write c1| · · · |ck for a finite domain sum type in
kind Di and εDi

for its empty sum. Here are their kinding (left) and
typing (right) rules:

c1, . . . , ck symbols in Di

c1| · · · |ck :: Di

c1| · · · |ck :: Di

ci : c1| · · · |ck

Kinds Gc1|···|ck
and Mc1|···|ck

indexed by finite domain sums make it
possible to have types that depend on specific subsets of Nodes or Labels

2This presentation is based on ongoing work with Andreas Rossberg.

April 7, 2005

4 /

without requiring more general term-dependent types.

Singleton types. If c1| · · · |ck :: Nodes is the type of nodes of a graph,
then {c1| · · · |ck} is the type of a set of these nodes. This is not suffi-
ciently precise to type the set of nodes of the graph because it doesn’t
express that the latter is a maximal set. To achieve this aim, we adopt
and adapt a limited version of singleton types (Stone, 2000). We write
!(c1| · · · |ck) for the type inhabited by the single value {c1, . . . , ck}. Here
are the relevant kinding, typing, and subtyping rules:

τ :: Di

!τ :: ?
!(c1| · · · |ck) :: ?

{c1, . . . , ck} : !(c1| · · · |ck)
!τ v {τ}

Graph types. A graph is defined from finite domain types ν and `
for its nodes and labels, and a type a for its attributes. We write Gν

for the kind of a graph over node type ν. Kinding and typing rules are:

ν :: Nodes ` :: Labels a :: ?
graph ν ` a :: Gv

V : !ν E : {(ν, ν, `)} A : ν → a
Graph V E A : graph ν ` a

Multigraph types. A multigraph is defined from graphs over the
same finite domain ν of nodes. We write Mν for its kind. Here are the
kinding and typing rules:

g1 :: Gν . . . gn :: Gν

[[f1 : g1, . . . , fn : gn]] :: Mν

G1 : g1 :: Gν . . . Gn : gn :: Gν

[[f1 = G1, . . . , fn = Gn]] : [[f1 : g1, . . . , fn : gn]] :: Mν

Grammars. An xdg grammar is a set of predicates over the same
multigraph type:

τ :: Mν

grammar τ :: ?
τ :: Mν S : {τ → Bool}
Grammar S : grammar τ

Note that, in order to match our intuitions about grammars, the gram-
mar type should be polymorphic in the finite domain type for nodes,
otherwise the number of nodes is fixed. This can be achieved by ex-
tending the kinding system to admit kind schemes Gδ and Mδ where δ
is a domain variable. An xdg framework is a set, also called a library,
of principle templates.

1.4 Typed Templates

Attributes are usually given in the form of attribute/value matrices
and principles parametrized by values which can be found at specific
feature paths. For example, on the syntactic dimension (V,Eid, Aid) the
agreement tuple assigned to each word must be one of those licensed
by its lexical entry:

Agr [[id = Graph V Eid Aid]] = ∀v ∈ V : Aid(v).agr ∈ Aid(v).lex.agrs

Modular Grammar Design with Typed Parametric Principles / 5

April 7, 2005

We can generalize this into a reusable principle by abstracting over
feature paths using access functions:

Elem D F1 F2 M = let val Graph V E A = D(M) in
∀v ∈ V : F1(A(v)) ∈ F2(A(v))

end

but this is not very legible and, for notational convenience, we explore
here an alternative that we call templates :

Elem〈d, p1, p2〉 [[d = Graph V E A]] = ∀v ∈ V : A(v).p1 ∈ A(v).p2

where d, p1, p2 are feature path variables. A feature path is a (possibly
empty) sequence of features. We write π for a path, ε for the empty
path, and π1π2 for the concatenation of π1 and π2. It is straightforward
to generalize the language by allowing feature paths or feature path
variables in types and patterns (and by extension in record ‘dot’ access)
where previously only features were allowed. The intuition of such an
extension lies in the congruence [ε : τ] ≡ τ , [π1π2 : τ] ≡ [π1 : [π2 : τ]],
and in the interpretation of a dot access .π as a postfix function of type
[π : τ] → τ .

Note that, if we write graph ν ` a for the type of Elem’s argument
graph, it is our intention that type inference should require a to match
the pattern [p1 : τ, p2 : {τ}, . . .]. This can be achieved either with a
type system supporting record polymorphism or by adopting an open-
world semantics3 for records and multigraphs, à la ψ-terms of life. For
simplicity, in this article we choose the latter.

We write 〈p1, p2〉 τ for the type of a template abstracting over
feature path variables p1 and p2; t may contain occurrences of p1 and
p2. We write τ1 :: κ1, . . . , τn :: κn ⇒ τ to express kinding constraints
on the free type variables of τ . The type of Elem is then:

Elem : 〈d, p1, p2〉 ν :: Nodes, ` :: Labels, τ :: ?⇒
[[d : graph ν ` [p1 : τ, p2 : {τ}]]] → Bool

1.5 Parametric Principles

We now illustrate how typed templates are intended to be used to define

parametric principles.4 We write v
l

−→E v
′ for an edge (v, v′, l) ∈ E,

v→E v
′ for one with any label, v→+

E v
′ for the transitive closure, and

v→E D for the type-raised relation where D = {v′ | ∀v→E v
′}, etc. . .

Tree Principle. It stipulates the set L of edge labels and requires
that 1) each node has at most one incoming edge, 2) there is precisely

3no closed arities
4For lack of space, we present only a few principles. For further information, the

reader is referred to e.g. (Debusmann et al., 2004, Debusmann and Duchier, 2004).

April 7, 2005

6 /

one node with no incoming edge (one root), and 3) there are no cycles:

Tree〈d〉 L [[d = Graph V E A]] =
∀v ∈ V : ∀M ⊆ V : M→E v ⇒ |M | ≤ 1 ∧
∃!v ∈ V : ∀M ⊆ V : M→E v ⇒ |M | = 0 ∧
∀v ∈ V : ∀D ⊆ V : v→+

E D ⇒ v /∈ D

Here is the type constraint assigning singleton type !` to L:

Tree : 〈d〉 ν :: Nodes, ` :: Labels ⇒ !`→ [[d : graph ν `]] → Bool

Valency Principle. Incoming and outgoing edges must comply with
the in and out valencies which stipulate, for each label ` ∈ L, how
many edges labeled with ` are licensed:

Valency〈d, pin, pout〉 L [[d = Graph V E A]] =

∀v ∈ V ∀` ∈ L : ∀M ⊆ V : M
`

−→E v ⇒ |M | ∈ A(v).pin.` ∧

∀v ∈ V ∀` ∈ L : ∀D ⊆ V : v
`

−→E D ⇒ |D| ∈ A(v).pout.`

Writing N for the type of natural numbers, here is the type constraint:

Valency : 〈d, pin, pout〉 ν :: Nodes, ` :: Labels ⇒
!`→ [[d : graph ν ` [pin : `→ {N}, pout : `→ {N}]]] → Bool

Climbing Principle. Originating from tdg, this principle expresses
that the tree-shape on dimension d1 is a flattening of that of d2: 1) the
dominance relation on d1 must be a subset of that on d2, 2) on d1, each
node must land on its d2-mother or climb higher:

Climbing〈d1, d2〉[[d1 = Graph V E1 A1, d2 = Graph V E2 A2]] =
∀v ∈ V : ∀D1, D2 ⊆ V : v→+

E1
D1 ∧ v→+

E2
D2 ⇒ D1 ⊆ D2 ∧

∀U1, U2 ⊆ V : U1 →
+
E1
v ∧ U2 →∗

E1
→E2

v ⇒ U1 ⊆ U2

Climbing : 〈d1, d2〉 ν :: Nodes ⇒
[[d1 : graph ν , d2 : graph ν]] → Bool

Lexicon Principle. XDG grammars are typically lexicalized : the
record assignments to nodes are then partially determined by a lexicon
Lex . The lexicon principle stipulates that each node must be assigned
a lexical entry :

Lexicon〈d〉 Lex [[d = Graph V E A]] = ∀v ∈ V : A(v) ∈ Lex

Here is the corresponding type constraint, stipulating that the graph
on dimension d has no edges (since this dimension has only the purpose
to carry the lexical entries):

Lexicon : 〈d〉 ν :: Nodes, τ :: ?⇒ {τ} → [[d : graph ν εLabels τ]] → Bool

Modular Grammar Design with Typed Parametric Principles / 7

April 7, 2005

Lookup Principle. A lexical entry is normally a record having a fea-
ture for each dimension. The lookup principle looks up a lexical entry’s
subrecord for a particular dimension and equates it with the plex feature
of the node’s attributes:

Lookup〈d1, d2, plex〉[[d1 = Graph V E1 A1, d2 = Graph V E2 A2]] =
∀v ∈ V : A1(v).plex = A2(v).d1

Lookup : 〈d1, d2, plex〉 ν :: Nodes, τ :: ?⇒
[[d1 : graph ν [plex : τ], d2 : graph ν [d1 : τ]]] → Bool

1.6 Example ID/LP Grammar

We now describe how the grammar of (Duchier and Debusmann, 2001)
can be assembled in our typed framework of parametric principles. To
better illustrate the compositionality of our approach, we adopt an
incremental presentation that derives more complex grammars from
simpler ones through operations of composition and restriction:

(Grammar S1) ++ (Grammar S2) = Grammar (S1 ∪ S2)
(Grammar S1) // S2 = Grammar (S1 ∪ S2)

The grammar requires 3 dimensions: id for syntax, lp for topology, and
lex for parametrization by a lexicon. They are respectively character-
ized by the following sets of labels:

Lid = {det, subj, obj, vbse, vprt, vinf, prt}
Llp = {d, df, n,mf, vcf, p, pf, v, vxf}
Llex = ∅

Figure 4 shows how grammars for the 3 individual dimensions (Gid,
Glp, Glex) are stipulated by instantiation of principles. For example,
for Gid, instantiation of Tree〈id〉 Lid has three consequences: (1) signs
are required to match [[id = X]], i.e. to have an id dimension, (2) the
directed graph on that dimension must have labels in Lid, (3) this
graph must be a tree. Gid+lex is a grammar where the id dimension is
restricted by lexical constraints from the lex dimension: it is obtained
by combining Gid and Glex using the composition operator ++, and
connecting them by the Lookup〈id, lex〉 principle using the restriction
operator //. Similarly for Glp+lex. Finally the full grammar Gid/lp is
obtained by combining Gid+lex and Glp+lex and mutually constraining
them by the Climbing and Barriers principles.

April 7, 2005

8 /

Glex = Grammar {Lexicon〈lex〉 Lex}
Gid = Grammar {Tree〈id〉 Lid,Valency〈id, in, out〉 Lid}
Gid+lex = (Gid ++ Glex) // {Lookup〈id, lex, lex〉}
Glp = Grammar {Tree〈lp〉 Llp,Valency〈lp, in, out〉 Llp,

Order〈lp, on, order, pos, self〉,
Projectivity〈lp, pos〉}

Glp+lex = (Glp ++ Glex) // {Lookup〈lp, lex, lex〉}
Gid/lp = (Gid+lex ++ Glp+lex) //

{Climbing〈lp, id〉,Barriers〈lp, id, blocks〉}

FIGURE 4 Defining grammars in an incremental and compositional way

1.7 Conclusion

In this paper, we have made a threefold contribution: (1) we described a
novel system of restricted dependent types capable of precisely describ-
ing graphs and multi-dimensional graphs, (2) we introduced a notion
of typed templates with which we could express parametric principles,
(3) we showed how these could enable a modular and compositional
approach to grammar design. Finally we illustrated our proposal with
an example reconstruction of an earlier grammar.

References

Debusmann, Ralph and Denys Duchier. 2004. XDG Development Kit.
http://www.ps.uni-sb.de/∼rade/mogul/publish/doc/debusmann-xdk/.

Debusmann, Ralph, Denys Duchier, Alexander Koller, Marco Kuhlmann,
Gert Smolka, and Stefan Thater. 2004. A Relational Syntax-Semantics
Interface Based on Dependency Grammar. In Proceedings of COLING

2004 . Geneva/CH.

Duchier, Denys and Ralph Debusmann. 2001. Topological Dependency Trees:
A Constraint-Based Account of Linear Precedence. In Proceedings of ACL

2001 . Toulouse/FR.

Gerdes, Kim and Sylvain Kahane. 2001. Word Order in German: A For-
mal Dependency Grammar Using a Topological Hierarchy. In ACL 2001

Proceedings. Toulouse/FR.

Mel’čuk, Igor. 1988. Dependency Syntax: Theory and Practice. Albany/US:
State Univ. Press of New York.

Stone, Christopher Allan. 2000. Singleton Kinds and Singleton Types. Ph.D.
thesis, Carnegie Mellon University.

Tesnière, Lucien. 1959. Eléments de Syntaxe Structurale. Paris/FR: Klinck-
siek.

